MATH 102:107, CLASS 25 (FRI NOV 3)

(1) A barrel initially contains 2 kg of salt dissolved in 20 L of water. Water flows in at a rate of 0.5 L per minute, and well-mixed salt water solution flows out at the same rate.
(a) Write down a differential equation for $S(t)$, the amount of salt in the barrel at time t.

Solution: The differential equation is

$$
\begin{gathered}
\frac{d S}{d t}=(\text { Salt in })-(\text { Salt out }) \\
\frac{d S}{d t}=0-(\text { Concentration })(0.5)
\end{gathered}
$$

this is because the water flowing in has no salt in it, and the water flows out at a rate of 0.5 L per minute. We can write the concentration of the salt in the water as the amount of salt divided by the volume of the barrel, i.e.

$$
\text { Concentration }=\frac{S}{20}
$$

so now our differential equation looks like

$$
\frac{d S}{d t}=-\frac{S}{20}(0.5)=-\frac{S}{40}
$$

(b) How many minutes will it take before there is only 1 kg of salt in the barrel?

Solution: We must find the value of t which gives $S(t)=1$. We'll do this by first solving the differential equation to find $S(t)$. The general solution to the differential equation is $S(t)=C e^{-t / 40}$. The given initial condition is $S(0)=2$, so this means that $C=2$ and therefore $S(t)=2 e^{-t / 40}$. Now solving $S(t)=1$,

$$
\begin{gathered}
2 e^{-t / 40}=1 \Longrightarrow e^{-t / 40}=1 / 2 \\
\Longrightarrow-t / 40=\ln (1 / 2)=-\ln (2) \\
\Longrightarrow t=40 \ln (2)
\end{gathered}
$$

Therefore, it will take $40 \ln 2$ minutes. (roughly 27.6 minutes)
(2) An object submerged in a pool of water has temperature T satisfying the differential equation

$$
\frac{d T}{d t}=-5 T+30
$$

Solution: See the scanned notes for the complete solution.
(3) Consider the differential equation $\frac{d y}{d t}=(2 y+1)^{1 / 2}$.
(a) Is $y=\frac{t-1}{2}$ a solution?

Solution: No, it is not. Just check both sides

$$
\begin{gathered}
\frac{d y}{d t} \stackrel{?}{=}(2 y+1)^{1 / 2} \\
\frac{1}{2} \stackrel{?}{=}\left(2 \frac{t-1}{2}+1\right)^{1 / 2} \\
\frac{1}{2} \stackrel{?}{=} t^{1 / 2}
\end{gathered}
$$

These are not equal.
(b) Is $y=\frac{t^{2}}{2}-\frac{1}{2}$ a solution?

Solution: It almost is, but no it is not! Check both sides

$$
\begin{gathered}
\frac{d y}{d t} \stackrel{?}{=}(2 y+1)^{1 / 2} \\
t \stackrel{?}{=}\left(2\left(\frac{t^{2}}{2}-\frac{1}{2}\right)+1\right)^{1 / 2} \\
t \stackrel{?}{=}\left(t^{2}\right)^{1 / 2}
\end{gathered}
$$

It is almost a solution - except that the right side is equal to $|t|$, not t itself! This is reflected in the fact that $y=\frac{t^{2}}{2}-\frac{1}{2}$ is decreasing for $t<0$, i.e. its derivative is negative, however the differential equation requires that the derivative is positive everywhere because square roots are positive.
(4) In this question, we write down a differential equation to model the growth of a spherical cell. Let $r(t)$ be the radius of the cell at time t, and let $m(t)$ be the mass of the cell at time t. We assume that

$$
\begin{gathered}
\frac{d m}{d t}=\text { Nutrients absorbed }- \text { Nutrients consumed } \\
=a S-b V
\end{gathered}
$$

where S is the surface area, V is the volume, and a and b are constants. We also assume that mass is proportional to the volume, i.e. $m=c V$ where c is a constant. By writing S and V in terms of the radius r, write down a differential equation for r.

Solution: $S=4 \pi r^{2}$ and $V=\frac{4}{3} \pi r^{3}$, so let's first write everything in terms of r.

$$
\begin{gathered}
\frac{d m}{d t}=a S-b V \\
\frac{d(c V)}{d t}=a S-b V
\end{gathered}
$$

$$
\frac{d\left(c \frac{4}{3} \pi r^{3}\right)}{d t}=a\left(4 \pi r^{2}\right)-b\left(\frac{4}{3} \pi r^{3}\right)
$$

I'm going to pull out all of the constant terms first to cancel some out.

$$
\begin{gathered}
\frac{4}{3} \pi c \frac{d\left(r^{3}\right)}{d t}=4 \pi a r^{2}-\frac{4}{3} \pi b r^{3} \\
c \frac{d\left(r^{3}\right)}{d t}=3 a r^{2}-b r^{3}
\end{gathered}
$$

Now use the Chain rule

$$
\begin{gathered}
3 c r^{2} \frac{d r}{d t}=3 a r^{2}-b r^{3} \\
\frac{d r}{d t}=\frac{a}{c}-\frac{b}{3 c} r
\end{gathered}
$$

and there is our differential equation for the radius of the cell. (This has steady state $r=\frac{3 a}{b}$, which is the largest radius cells can sustain in this model.)

